Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD. (doi:10.34691/UCHILE/4MDLCP)

View:

Part 1: Document Description
Part 2: Study Description
Part 5: Other Study-Related Materials
Entire Codebook

Document Description

Citation

Title:

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Identification Number:

doi:10.34691/UCHILE/4MDLCP

Distributor:

Repositorio de datos de investigación de la Universidad de Chile

Date of Distribution:

2024-05-30

Version:

2

Bibliographic Citation:

Hetz, Claudio; Vicente Valenzuela; Daniela Becerra; José Astorga; Matias Fuentealba; Guillermo Diaz; Leslie Bargsted; Carlos Chacón; Alexis Martinez; Romina Gozalvo; Kasey Jackson; Vania Morales; Macarena Las Heras; Giovanni Tamburini; Leonard Petrucelli; Pablo Sardi; Lars Plate, 2024, "Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.", https://doi.org/10.34691/UCHILE/4MDLCP, Repositorio de datos de investigación de la Universidad de Chile, V2

Study Description

Citation

Title:

Artificial enforcement of the unfolded protein response (UPR) reduces disease features in multiple preclinical models of ALS/FTD.

Identification Number:

doi:10.34691/UCHILE/4MDLCP

Authoring Entity:

Hetz, Claudio (Universidad de Chile - Facultad de Medicina)

Vicente Valenzuela (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Daniela Becerra (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

José Astorga (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Matias Fuentealba (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Guillermo Diaz (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Leslie Bargsted (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Carlos Chacón (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Alexis Martinez (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Romina Gozalvo (Biomedical Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile)

Kasey Jackson (Sanofi Genzyme Corp., Cambridge Ma, USA)

Vania Morales (Sanofi Genzyme Corp., Cambridge Ma, USA)

Macarena Las Heras (Sanofi Genzyme Corp., Cambridge Ma, USA)

Giovanni Tamburini (Sanofi Genzyme Corp., Cambridge Ma, USA)

Leonard Petrucelli (Sanofi Genzyme Corp., Cambridge Ma, USA)

Pablo Sardi (Sanofi Genzyme Corp., Cambridge Ma, USA)

Lars Plate (Sanofi Genzyme Corp., Cambridge Ma, USA)

Distributor:

Repositorio de datos de investigación de la Universidad de Chile

Access Authority:

Hetz, Claudio

Depositor:

Hetz, Claudio

Date of Deposit:

2024-05-30

Holdings Information:

https://doi.org/10.34691/UCHILE/4MDLCP

Study Scope

Keywords:

Medicine, Health and Life Sciences

Abstract:

Data used for Research Article submission to Molecular Therapy Journal for review Amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) are part of a spectrum of diseases that share several causative genes, resulting on a combinatory of motor and cognitive symptoms and abnormal protein aggregation. Multiple unbiased studies have revealed that proteostasis impairment at the level of the endoplasmic reticulum (ER) is a transversal pathogenic feature of ALS/FTD. The transcription factor XBP1s is a master regulator of the unfolded protein response (UPR), the main adaptive pathway to cope with ER stress. Here we provide evidence of suboptimal activation of the UPR in ALS/FTD models under experimental ER stress. To artificially engage the UPR, we intracerebroventricularly administrated adeno-associated viruses (AAV) to express the active form of XBP1 (XBP1s) in the nervous system of ALS/FTD models. XBP1s expression improved motor performance and extended life span of mutant SOD1 mice, associated with reduced protein aggregation. AAV-XBP1s administration also attenuated disease progression in models of TDP-43 and C9orf72 pathogenesis. Proteomic profiling of spinal cord tissue revealed that XBP1s overexpression improved proteostasis and modulated the expression of a cluster of synaptic and cell morphology proteins. Our results suggest that strategies to improve ER proteostasis may serve as a pan-therapeutic strategy to treat ALS/FTD.

Methodology and Processing

Sources Statement

Data Access

Other Study Description Materials

Other Study-Related Materials

Label:

Valenzuela et al. 2024 Figures Mol Ther_FINAL-1.pdf

Notes:

application/pdf